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WHEN IS THE INSERTION OF THE GENERATORS
INJECTIVE FOR A SUR-REFLECTIVE SUBCATEGORY OF A

CATEGORY OF MANY-SORTED ALGEBRAS?

J. CLIMENT VIDAL AND J. SOLIVERES TUR

Abstract. For a many-sorted signature Σ = (S, Σ) we characterize, by

defining the concept of support of an S-sorted set and a convenient alge-

braic closure operator ExΣ on S, those sur-reflective subcategories K of the

category Alg(Σ) of all Σ-algebras for which the unit of the adjunction from

SetS to K is pointwise monomorphic.

1. Introduction.

Let Σ be a single-sorted signature andK a set of Σ-algebras abstract (i.e., closed
under isomorphic algebras) and closed under subalgebras and direct products or,
what is equivalent (see, e.g., [9], Theorem 13, p. 197), a sur-reflective subcategory
K of the category Alg(Σ) of all Σ-algebras. Then the non-triviality of K, as it
is well known, is a necessary and sufficient condition for the pointwise injectivity
of the unit ν of TΣ,K a GK : Set / K, the canonical adjunction from Set to
K, where Set is the category of sets, K the sur-reflective subcategory of Alg(Σ)
determined by K, GK the forgetful functor from K to Set, and TΣ,K the functor
from Set to K which assigns to a set X the free K-algebra over X. We notice
that we take Set to be the category whose set of objects is U , a Grothendieck
universe fixed once and for all. Moreover, for every Σ-algebra A = (A,F ), we
assume that A ∈ U .

The corresponding situation in the many-sorted case is somewhat different.
Firstly, we recall that, for a many-sorted signature Σ = (S, Σ), a Σ-algebra A is
called subfinal if, for every Σ-algebra B, there exists at most one Σ-homomorphism
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from B to A. Let Σ = (S, Σ) be a many-sorted signature andK a set of Σ-algebras
abstract and closed under subalgebras and direct products or, what is equivalent
(see [8], Corollar 3.9, p. 29), a sur-reflective subcategory K of the category Alg(Σ)
of all Σ-algebras. Then the non-triviality of K, that is, the condition that K con-
tains at least one non-subfinal Σ-algebra, although necessary is not sufficient, in
general, for the pointwise injectivity of the unit ν of TΣ,K aGK : SetS / K,
the canonical adjunction from SetS to K, where SetS is the usual functor cat-
egory and K, GK, and TΣ,K are the many-sorted counterparts of its respective
single-sorted homologous. From now on, for a Σ-algebra A = (A,F ), it is as-
sumed that A = (As)s∈S ∈ US . Moreover, by abuse of notation, we let A ∈ K or
A ∈ Alg(Σ) stands for A ∈ K or A ∈ Alg(Σ), respectively, where K and Alg(Σ)
denote, respectively, the sets of objects of the categories K and Alg(Σ).

There are examples of many-sorted signature Σ = (S, Σ), with card(S) ≥ 2,
and of sur-reflective subcategories K of Alg(Σ) for which the non-triviality of K
is a sufficient condition for the pointwise injectivity of the unit of TΣ,KaGK (and
consequently equivalent to it, since the non-triviality of K is always a necessary
condition for the pointwise injectivity of the unit of TΣ,K aGK). For instance,
one may form the category Act of all left acts over all monoids. An object of
Act is a pair (M, X), where M is a monoid and X a left M-act (see [6], p.
43). A morphism (M, X) // (M′, X ′) is a pair (f, g), where f : M // M′ is a
morphism of monoids and g : X // X ′ is a morphism of left M-acts, that is, for
every m ∈ M and every x ∈ X, g(m ·x) = f(m) ·g(x). Given the forgetful functor
GAct : Act // Set2 and a 2-sorted set (Y, X), we have that TAct(Y, X), the free
left act over (Y,X), is (Y?, Y ? × X), where Y? is the free monoid over Y and
Y ? its underlying set, and that the 2-sorted mapping from (Y, X) to (Y, Y ?×X)
which sends (y, x) to ((y), (λ, x)), with λ the empty word over Y and (y) the word
of length one over Y associated to y, is an embedding. Therefore the unit of the
adjunction TActaGAct : Set2 / Act is pointwise injective.

For another example of the same genre as the above consider the category
Mod of all left modules over all rings (see [7], p. 35).

On the other hand, there are also examples of many-sorted signature Σ =
(S, Σ), with card(S) ≥ 2, and of sur-reflective subcategories K of Alg(Σ) for
which the non-triviality of K is not a sufficient condition for the pointwise injec-
tivity of the unit of TΣ,KaGK. For instance, let Σ be the many-sorted signature
with sort set S = {s0, s1}, and with Σw,s = {σ}, if w = λ and s = s0, and
Σw,s = ∅ for all other w, s, and let K be the set of all Σ-algebras A such that
card(As1) ≤ 1. Then K is a set of Σ-algebras non-trivial, abstract, and closed
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under subalgebras and direct products. Moreover, for the S-sorted set (∅, 2), the
canonical S-sorted mapping from (∅, 2) to TΣ,K(∅, 2) = GK(TΣ,K(∅, 2)) is not
injective. We recall that TΣ,K(∅, 2) is the quotient of TΣ(∅, 2), the absolutely
free Σ-algebra over (∅, 2), by ≡K

TΣ(∅,2), the congruence on TΣ(∅, 2) defined as

≡K
TΣ(∅,2)=

⋂

f∈Hom(TΣ(∅,2),A)
& A∈K

Ker(f).

Another example which falls within the same genre as the just stated is ob-
tained as follows. Let Σ be the many-sorted signature with sort set S = {s0, s1},
and with Σw,s = {σ}, if w = (s0), the word of length one over S associated to s0,
and s = s1, and Σw,s = ∅ for all other w, s, and let K be the set of all Σ-algebras
A such that card(As0) ≤ 1. Then K is a set of Σ-algebras non-trivial, abstract,
and closed under subalgebras and direct products. Moreover, for the S-sorted set
(2,∅), the canonical S-sorted mapping from (2,∅) to TΣ,K(2,∅) is not injective.

An additional example related to parameterized data type definitions can be
easily extracted from that one provided in [4], p. 311.

The main goal of this article is to obtain, for an arbitrary but fixed many-sorted
signature Σ = (S, Σ), a characterization of those sur-reflective subcategories K
of Alg(Σ) for which it happens that, for every S-sorted set X, the insertion νX

of the generators X into TΣ,K(X) = GK(TΣ,K(X)) is injective. The method
we have used to attain this goal is, ultimately, founded on the definition of the
concept of support mapping for S and on the definition of a suitable algebraic
closure operator on S.

We next proceed to describe the contents of the second, and final, section of this
article. In it we begin by defining, for every set of sorts S, the support mapping
for S, denoted by suppS , as the mapping from US , the set of all S-sorted sets, to
Sub(S), the set of all subsets of S, which assigns to A = (As)s∈S ∈ US its support
suppS(A) = { s ∈ S | As 6= ∅ }. Then, given a sort t ∈ S, we continue by defining
the Kronecker delta δt at t, which is a special S-sorted set. These Kronecker
deltas will be used to define some S-sorted sets which are necessary to set up
some proofs. We notice in passing that the Kronecker deltas δt, for t ∈ S, are the
building blocks of the S-sorted sets, since, for every S-sorted set A, we have that
A is isomorphic to

∐
s∈S card(As) · δs, where card(As) · δs =

∐
α∈card(As) δs, for

all s ∈ S.
After having done that we assign to every many-sorted signature Σ = (S, Σ) an

algebraic closure operator ExΣ on S. The algebraic closure operator ExΣ sends a
subset T of S to ExΣ(T ) = suppS(TΣ(X)), its Σ-extent, where X is any S-sorted
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set such that suppS(X) = T and TΣ(X) the underlying S-sorted set of TΣ(X),
the absolutely free Σ-algebra over X.

Following this, for every many-sorted signature Σ = (S,Σ), we prove that
the closed sets of the algebraic closure system associated to ExΣ are exactly the
supports of the underlying S-sorted sets of all Σ-algebras. We next prove that, for
a set of Σ-algebras K abstract and closed under subalgebras and direct products,
the mappings suppS , ExΣ, and TΣ,K, where TΣ,K stands for the object mapping
of the functor GK ◦TΣ,K, are such that suppS ◦ TΣ,K = ExΣ ◦ suppS .

After having stated all of these auxiliary results we provide a solution to the
problem posed in the title of this paper. Concretely, we prove the following char-
acterization theorem: For a many-sorted signature Σ = (S, Σ) and a sur-reflective
subcategory K of Alg(Σ), the unit ν of the adjunction TΣ,KaGK : SetS / K
is pointwise monomorphic if and only if there are “enough” Σ-algebras in K. In
other words, we prove, on account of the above alternative, but equivalent, de-
scription of the fixed points of ExΣ, that ν is pointwise monomorphic if and only
if, for every Σ-algebra B and for every sort s in suppS(B), there exists at least
one Σ-algebra A in K such that suppS(A) = suppS(B) and card(As) ≥ 2.

To finish this introductory section it is appropriate to remark that there is a
connection between the just mentioned characterization theorem and a theorem
stated by Birkhoff-Frink in [1]. Specifically, in [1], p. 300, it is proved that any
algebraic closure space arises as the subalgebra closure space for some algebra
structure on the underlying set of the algebraic closure space. More accurately,
it is proved that, for every algebraic closure space (A, J), there exists a single-
sorted signature Σ(A,J) and a Σ(A,J)-algebra structure F (A,J) on A such that
(A, Sg(A,F (A,J))) = (A, J), where Sg(A,F (A,J)) is the subalgebra generating oper-
ator on A induced by the Σ(A,J)-algebra (A, F (A,J)). Therefore we can assert
that, for a many-sorted signature Σ = (S, Σ) and a sur-reflective subcategory
K of Alg(Σ), the characterization of the pointwise injectivity of the unit ν of
the adjunction from SetS to K, keeping in mind the aforementioned theorem
of Birkhoff-Frink, has been partially done in terms of a single-sorted algebra
(S, F (S,ExΣ)) (and of the concept of support mapping for S).

In all that follows we use standard concepts and constructions from category
theory, see [2] and [7], and from many-sorted algebra, see [8] and [9].

2. The characterization theorem.

Our main goal in this section is to state a theorem which characterizes those
sur-reflective subcategories of a category of many-sorted algebras for which the
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values of the units of the corresponding adjunctions are injective. However, to
attain the goal just mentioned we need to begin by defining, for a set of sorts S,
the concept of support of an S-sorted set and that of Kronecker delta at a sort in
the set of sorts S.

Definition 2.1. Let S be a set of sorts in U .

(1) The support of an S-sorted set A = (As)s∈S ∈ US , denoted by suppS(A),
is { s ∈ S | As 6= ∅ }. From now on, suppS stands for the mapping from
US to Sub(S) which sends an S-sorted set to its support, and we call it
the support mapping for S.

(2) Let t be a sort in S. Then the Kronecker delta at t, denoted by δt, is the
S-sorted set (δt

s)s∈S defined, for every s ∈ S, as follows: δt
s = 1, if s = t,

and δt
s = ∅, otherwise.

Remark. The concept of support does not play any significant role in the case
of the single-sorted algebras. Nevertheless, it has turned to be essential to ac-
complish some investigations in the field of many-sorted algebras, for example,
that one in [3]. Moreover, the family supp = (suppS)S∈U is a pseudo-natural-
transformation from a pseudo-functor to a functor, both from the category Set
to the 2-category Cat.

In the following proposition, for a set of sorts S, we gather together only those
properties of the support mapping for S which will actually be used in the proofs
of some of the propositions following it.

Proposition 2.2. Let S be a set of sorts, A, B two S-sorted sets, Φ an S-sorted
equivalence relation on A, that is, Φ = (Φs)s∈S, where, for every s ∈ S, Φs is an
equivalence relation on As, and (Ai)i∈I = ((Ai

s)s∈S)i∈I a family of S-sorted sets
indexed by a set I. Then the following properties hold:

(1) Hom(A,B) 6= ∅ iff suppS(A) ⊆ suppS(B). Therefore, if A ⊆ B, that is,
if, for every s ∈ S, As ⊆ Bs, then suppS(A) ⊆ suppS(B).

(2) If from A to B there exists a surjective S-sorted mapping, then we have
that suppS(A) = suppS(B). Therefore, suppS(A) = suppS(A/Φ), where,
for every s ∈ S, (A/Φ)s = As/Φs.

(3) suppS(
⋃

i∈I Ai) =
⋃

i∈I suppS(Ai), where, for every s ∈ S, (
⋃

i∈I Ai)s is⋃
i∈I Ai

s.
(4) If I 6= ∅, then suppS(

∏
i∈I Ai) =

⋂
i∈I suppS(Ai), where, for every s ∈ S,

(
⋂

i∈I Ai)s is
⋂

i∈I Ai
s and (

∏
i∈I Ai)s is

∏
i∈I Ai

s.

Proof. The proof is straightforward. ¤
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Our next objective is to assign, in a natural way, to every many-sorted signa-
ture Σ = (S, Σ) an algebraic closure operator ExΣ on S, and to state and prove
those facts about the operator ExΣ which will used afterwards in the proof of the
characterization theorem.

Proposition 2.3. Let Σ = (S, Σ) be a many-sorted signature. Then the self-
mapping ExΣ of Sub(S) which sends a subset T of S to ExΣ(T ) = suppS(TΣ(X)),
where X is any S-sorted set such that suppS(X) = T , for example, X =

⋃
s∈T δs,

is an algebraic closure operator on S. We agree to call the value of ExΣ at a
subset T of S the Σ-extent of T .

Proof. The self-mapping ExΣ is well-defined, i.e., if Y is another S-sorted set
such that also suppS(Y ) = T , then suppS(TΣ(X)) = suppS(TΣ(Y )). As a matter
of fact, from suppS(Y ) = T , we deduce, since, by hypothesis, suppS(X) = T , that
Hom(X,Y ) and Hom(Y, X) are nonempty, thus neither Hom(TΣ(X),TΣ(Y )) nor
Hom(TΣ(Y ),TΣ(X)) is empty, therefore, by the first part of Proposition 2.2,
suppS(TΣ(X)) = suppS(TΣ(Y )).

Having checked that the operator ExΣ is well-defined, we continue by proving
that it is an algebraic closure operator on S.

Let us first prove that the operator ExΣ is extensive. Let T ⊆ S be and t ∈ T .
Then, since suppS(X) = T , t ∈ suppS(X), that is, Xt 6= ∅. But from X to
TΣ(X) we have the S-sorted mapping ηX , that is, the value at X of the unit η

of the adjunction TΣ a GΣ from SetS to Alg(Σ), thus TΣ(X)t 6= ∅, that is,
t ∈ ExΣ(T ). Therefore ExΣ is extensive.

Our next objective is to prove that the operator ExΣ is isotone. Let T , U ⊆ S

be such that, T ⊆ U . Then taking an S-sorted set X such that suppS(X) = T and
another S-sorted set Y such that suppS(Y ) = U , since there exists an S-sorted
mapping from X to Y , there exists also a Σ-homomorphism from TΣ(X) to
TΣ(Y ). Thus, if s ∈ ExΣ(T ), that is, if TΣ(X)s 6= ∅, then also TΣ(Y )s 6= ∅,
that is, s ∈ ExΣ(U). Therefore ExΣ is isotone.

We next prove that the operator ExΣ is idempotent. It is obvious that, for a
subset T of S, ExΣ(T ) ⊆ ExΣ(ExΣ(T )). Reciprocally, if s ∈ ExΣ(ExΣ(T )), then
s ∈ suppS(TΣ(Y )), for some S-sorted set Y such that suppS(Y ) = suppS(TΣ(X)),
where X is an S-sorted set such that suppS(X) = T . Moreover, from the equality
suppS(Y ) = suppS(TΣ(X)) it follows, by the first part of Proposition 2.2, that
Hom(Y, TΣ(X)) 6= ∅, thus Hom(TΣ(Y ),TΣ(X)) 6= ∅. But TΣ(Y )s 6= ∅, there-
fore TΣ(X)s 6= ∅, that is, s ∈ suppS(TΣ(X)), hence s ∈ ExΣ(T ). From this we
can assert that ExΣ(ExΣ(T )) ⊆ ExΣ(T ). Thus ExΣ is idempotent.
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Finally, we prove that the operator ExΣ is algebraic, that is, that, for every
subset T of S, the following equality ExΣ(T ) =

⋃
U∈Subf (T ) ExΣ(U) holds, where

Subf(T ) is the set of all finite subsets of T . Let T be a subset of S. Then ExΣ(T )
can be represented, for example, as suppS(TΣ(

⋃
s∈T δs)). Moreover, taking into

account that, for every S-sorted set X, TΣ(X) is essentially SgWΣ(X)(X), the
subalgebra of the Σ-algebra WΣ(X) of Σ-rows in X generated by X, and that the
operator SgWΣ(X) is, in particular, algebraic, we can affirm that TΣ(

⋃
s∈T δs) is

isomorphic to
⋃

U∈Subf(T ) TΣ(
⋃

s∈U δs). Therefore, by the third part of Proposi-
tion 2.2 and since two isomorphic S-sorted sets have, obviously, the same support,
we can affirm that suppS(TΣ(

⋃
s∈T δs)) =

⋃
U∈Subf (T )(suppS(TΣ(

⋃
s∈U δs))),

hence, as we wanted to prove, ExΣ(T ) =
⋃

U∈Subf(T ) ExΣ(U). Thus ExΣ is
algebraic. This completes the proof. ¤

Remark. The family (ExΣ)Σ∈Sig is actually the object mapping of a functor
Ex from a convenient category Sig of many-sorted signatures to the category
AClSp of algebraic closure spaces and continuous mappings. This shows that
the assignation we have stated in Proposition 2.3 is definitely a natural one.

From Proposition 2.3 it follows that Fix(ExΣ) = {T ⊆ S | T = ExΣ(T ) }, the
set of all fixed points of the algebraic closure operator ExΣ, is an algebraic closure
system on S. On the other hand, since the elements of Fix(ExΣ), on account of
the definition of the operator ExΣ, have a complicated description, we provide in
the following proposition a more tractable characterization of them based on the
supports of the underlying S-sorted sets of all Σ-algebras in Alg(Σ).

Proposition 2.4. Let Σ = (S, Σ) be a many-sorted signature. Then we have
that

Fix(ExΣ) = { suppS(A) | A ∈ Alg(Σ) }.
Proof. Let us first prove that Fix(ExΣ) ⊆ { suppS(A) | A ∈ Alg(Σ) }. Indeed,
if T ∈ Fix(ExΣ), then, for an S−sorted set X such that suppS(X) = T , we have
that T = suppS(TΣ(X)). Thus T ∈ { suppS(A) | A ∈ Alg(Σ) }.

Reciprocally, if A ∈ Alg(Σ), then we have that suppS(A) ⊆ suppS(TΣ(A)),
because there is an S-sorted mapping from A to TΣ(A), precisely ηA, the insertion
of A into TΣ(A), and that suppS(TΣ(A)) ⊆ suppS(A), because from TΣ(A) to A
there exists at least one Σ-homomorphism, for example, the canonical extension
id]

A of idA to TΣ(A). Therefore suppS(TΣ(A)) = suppS(A). Hence, from this
equality and the definition of the operator ExΣ in Proposition 2.3, it may be
concluded that

ExΣ(suppS(A)) = suppS(TΣ(A)) = suppS(A),
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that is, that suppS(A) is a fixed point of ExΣ. This completes the proof. ¤

The proposition just stated can also be interpreted, dually, as meaning that,
for a many-sorted signature Σ = (S, Σ), the set obtained by gathering together
the supports of the underlying S-sorted sets of all Σ-algebras in Alg(Σ) is not
an amorphous set, but an algebraic closure system on S, and that its canonically
associated algebraic closure operator on S is precisely ExΣ.

Before stating the relation between the mappings suppS , ExΣ, and the object
mapping of the functor TΣ,K = GK ◦TΣ,K we provide for the algebraic closure
system Fix(ExΣ) on S, and taking into account Proposition 2.4, the following
description of: (1) the top element of Fix(ExΣ), (2) the meet of a nonempty
family in Fix(ExΣ), and (3) the join of a nonempty directed family in Fix(ExΣ).
The top element is suppS((1)s∈S), where (1)s∈S is the underlying S-sorted set of
the final Σ-algebra 1. For a nonempty family of Σ-algebras (Ai)i∈I , the meet of
(suppS(Ai))i∈I is suppS(

∏
i∈I Ai), since

∏
i∈I Ai ∈ Alg(Σ) and, by the fourth

part of Proposition 2.2, we have that
⋂

i∈I suppS(Ai) = suppS(
∏

i∈I Ai). Finally,
for a nonempty directed family of Σ-algebras (Ai)i∈I , the join of (suppS(Ai))i∈I

is
⋃

i∈I suppS(Ai), since
⋃

i∈I Ai ∈ Alg(Σ) and, by the third part of Proposi-
tion 2.2, we have that

⋃
i∈I suppS(Ai) = suppS(

⋃
i∈I Ai).

For a many-sorted signature Σ, an S-sorted set X, and a set K of Σ-algebras
abstract and closed under subalgebras and direct products, we prove in the fol-
lowing proposition that TΣ,K(X) is such that its support equals the Σ-extent of
the support of X which, we warn, contains, in general, strictly the support of X.

Proposition 2.5. Let K be a set of Σ-algebras abstract and closed under sub-
algebras and direct products. Then the mappings suppS, ExΣ, and TΣ,K, where
TΣ,K stands for the object mapping of the functor GK ◦TΣ,K, are such that, for
every S-sorted set X, it happens that

suppS(TΣ,K(X)) = ExΣ(suppS(X)).

Proof. From the definition of ExΣ, we have ExΣ(suppS(X)) = suppS(TΣ(X)).
Moreover, from TΣ(X) to TΣ,K(X) there exists a surjective Σ-homomorphism,
since TΣ,K(X) is a quotient of TΣ(X), thus, by the second part of Proposition 2.2,
suppS(TΣ(X)) = suppS(TΣ,K(X)). Hence suppS(TΣ,K(X)) = ExΣ(suppS(X)).

¤

Finally, we state and prove, for a many-sorted signature Σ = (S, Σ) and on the
basis of the support mapping suppS for S and of the algebraic closure operator
ExΣ on S, the characterization theorem. We notice that this theorem generalizes
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the classical characterization theorem, mentioned at the beginning of the intro-
ductory section, to the context of many-sorted algebras in which, we emphasize,
the original theorem fails to apply.

Theorem 2.6. Let Σ be a many-sorted signature and K a set of Σ-algebras ab-
stract and closed under subalgebras and direct products or, what is equivalent, a
sur-reflective subcategory K of Alg(Σ). Then the following conditions are equiv-
alent:

(1) For every S-sorted set X, νX : X // TΣ,K(X), the component at X of
the unit ν of the adjunction TΣ,KaGK from SetS to K, is injective.

(2) For every T ∈ Fix(ExΣ) and for every sort s ∈ T there exists at least
one Σ-algebra A in K such that suppS(A) = T and card(As) ≥ 2, or,
what is the same, by Proposition 2.4, for every Σ-algebra B and for ev-
ery s ∈ suppS(B), there exists at least one Σ-algebra A in K such that
suppS(A) = suppS(B) and card(As) ≥ 2.

Proof. Let us assume that, for every S-sorted set X, νX : X // TΣ,K(X) is
injective. Let T ∈ Fix(ExΣ) be and s ∈ T . Then there exists an S-sorted set X

such that suppS(X) = T and card(Xs) ≥ 2, e.g., X =
(⋃

t∈T−{s} δt
)
∪ (δs

∐
δs).

Hence, for the Σ-algebra TΣ,K(X), we have, on the one hand, that TΣ,K(X) is an
element of K, since, by hypothesis, K is a set of Σ-algebras abstract and closed un-
der subalgebras and direct products, on the other hand, that card(TΣ,K(X)s) ≥ 2,
because νX

s is injective and card(Xs) ≥ 2, and, finally, that suppS(TΣ,K(X)) = T ,
since ExΣ(T ) = T , suppS(X) = T , and, by Proposition 2.5, suppS(TΣ,K(X)) =
ExΣ(suppS(X)).

Reciprocally, let us assume that, for every T ∈ Fix(ExΣ) and every s ∈ T , there
exists at least one Σ-algebra A in K such that suppS(A) = T and card(As) ≥ 2.
Let X be an S-sorted set. Then, for T = ExΣ(suppS(X)) and s ∈ T there exists
at least one Σ-algebra A in K such that suppS(A) = T and card(As) ≥ 2. Now,
given x, y ∈ Xs such that x 6= y we can assert that there exists an S-sorted map-
ping f : X // A such that fs(x) 6= fs(y). Therefore, for the canonical extension
f [ of f to TΣ,K(X), f [

s(νX
s (x)) 6= f [

s(νX
s (y)), thus νX

s (x) 6= νX
s (y). Hence, νX is

injective. ¤

Remark. In [8], the excellent (but, apparently, little known) Dissertation of G.
Matthiessen (where he carried out a thorough treatment and deeper discussion of
many-sorted universal algebra), the reader will see with dazzling clarity, in oppo-
sition to a widespread and unjustified belief, that many-sorted universal algebra
is not at all an inessential variation of classical universal algebra. To be more
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precise, the reader will learn when studying [8] that even though the well known
semantical characterizations for the single-sorted algebras are transferable to the
finitary quasi-equational classes and to the equational classes of many-sorted al-
gebras this is not so, however, for the quasi-equational classes and the finitary
equational classes of many-sorted algebras (the referee in his report also empha-
sizes this aspect when he talks about Birkhoff’s variety theorem). Notice that,
surprisingly, these facts have been simply ignored in the writings devoted to this
topic since 1976 onwards or have been partially rediscovered subsequently. In
this regard it is worth pointing out that [8] has been cited, as early as 1979, by
Grätzer in [5] (the standard reference in classical universal algebra), p. 540.

Acknowledgement. We are grateful to the referee for several helpful comments
leading to improvements in the exposition.
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